

BRAINMATTERS

2004 YEAR IN REVIEW

The NEUROSCIENCES INSTITUTE

"The study of the brain is fascinating to me, for it's impossible not to wonder how it all works and sorts things out logically. I am especially interested in the study of the relationship between music and language and how they interact with one another."

— ESTHER BURNHAM

Research Programs6

Research Program6

Recent Research Discoveries7

Do Fruit Flies Sleep?.....8

How Do We Navigate?.....9

Learning with NOMAD10

Other Ongoing Research......11

Music...A Unique Window

Research Publications 2004......12

Community Programs14

Fellows and Staff......22

Foundation, Inc.23

Acknowledging Our Donors19

Recognition Wall......21

Performing Arts at

Announcing Our Donor

Neurosciences Research

Library Roundtables.....14

The Neurosciences Institute15
Minding the Arts16

Articles in Press......12

Articles Published12

into the Brain.....11
Caffeine and the Brain11

The Neurosciences

"I support the Institute, both with my contributions and with my encouragement to others to do the same, because I believe so deeply in its fundamental premise that intellectual freedom leads to astonishing discoveries."

— LEWIS CULLMAN

"Since my first visit to the Institute more than three years ago I have been impressed with the dedication of the research scientists and their efforts to unravel the secrets of the brain. In addition, the acoustically perfect Auditorium has been provided as a venue for performing arts groups in the area. This Auditorium is provided at no cost, and I consider that a very real gift to the community!"

— ELISABETH "JINX" ECKE

"Seldom in a lifetime does one come face to face with an effort that can so profoundly change our understanding of the human experience as the work of The Neurosciences Institute. I feel fortunate to be involved in this effort, and am continually astounded at its implications. The brain truly is the new frontier."

- BILL WALSH

"By determining how human brains give rise to emotions, thought, language, memory, and ideas, the scientific theory under development at the Institute is deepening and extending the understanding of what it means to be human. It gives me great joy and satisfaction to support this remarkable, ramifying voyage of discovery."

— Susan Borden

From THE DIRECTOR

It the end of a year of accomplishment, it is a gratifying exercise to take stock, to summarize achievements, and to look forward to further efforts in the future.

Thoughts of our past accomplishments can be categorized in a variety of ways. The one that comes to my mind at this time has been applied to notions of drama. It has been said that the categories of drama are scene, act, agents, agency, and purpose. As I reminisce, I shall rearrange the order of these categories. First, purpose: the purpose of scientific efforts at the Institute is to understand how the human brain works. The way we have approached this goal involves, above all, a set of remarkable agents: our scientists in both theoretical and experimental domains. Their acts, some of which I shall mention later, are truly creative. And the agency by which they have accomplished so much is in fact the Institute itself, considered as physical and spiritual. The

physical Institute is our scene and numerous architectural prizes attest to its beauty and utility. It has been an item of great pride amongst our fellowship that we can carry out our exertions in so beautiful a place. We offer that beauty along with our best wishes to the community itself in the form of our auditorium, which is used increasingly for many purposes: social, educational, and artistic. The recent great success of our *Minding the Arts* program attests to the valuable linkages we have made with many individuals and organizations in the La Jolla and San Diego communities.

Before mentioning some of our scientific highlights, I want to describe again the special nature of our organization. I do so because as a factor in our success, our organizational structure is second only to the remarkable talent of our young scientists. It has been noted that the greatest biomedical breakthroughs of the last century came from organizations which were relatively small, freely funded, and diverse in their scholarly range, but not too diverse. The Institute has exactly these characteristics and, as in the past, they have proven to be highly effective in producing important and exciting scientific discoveries. Science is imagination in the service of the verifiable truth. Notice that imagination is an essential ingredient. The organization of the Institute encourages imagination at its widest reach while applying the strongest standards of verifiability to our work.

The results have been most gratifying. They range from original studies on the genetics of sleep, to the demonstration that invertebrate species sleep, to the deep problem of how we control our motions and actions, and even to examination of brain states that are correlated with consciousness. Amongst the most exciting developments are the construction of brain-based devices that, in a defensible sense, can be considered to be the first non-living things that learn. The most recent of these devices, Darwin X, has even incorporated a brain region—the hippocampus—that is responsible for episodic memory, the memory of sequences of events located in various places. Indeed, Darwin X can locate itself in a room based on cues it receives from its visual experience.

We have recently published our *Scientific Report* which describes these developments in greater detail. I want here to mention what has struck me on first viewing of this report. It is that, for a research organization with no more than forty scientists at any one time, the range across biology of the various research efforts is truly stunning. I have pondered on this and have come to the conclusion that this range reflects the imagination of our young scientists who labor mightily, but who are wise to avoid labor-intensive, "big science" projects. Those projects are carried out very well in large institutions. In contrast, what distinguishes us is the opportunity to try out new and unusual ideas. The scientific research based on these ideas is eminently practical: we have not neglected their importance to disease nor have we ignored the practical applications of our inventions.

This work embeds all of the signs of progress. One of the key characteristics of the idea of progress is the steady accretion of new knowledge useful to humanity. But there is another kind of progress which we continually strive to realize. It is to increase the understanding of persons in our non-scientific community so that we may share the benefits of our insights with the generous donors and witnesses of our work. I take this opportunity to thank them for all their efforts and support.

Gerald M. Edelman, M.D., Ph.D. Director

STRUCTURE and Organization

Great science depends as much on organization and environment as it does on the brilliance of the scientist.

In the world of major academic and scientific institutions, it is often difficult for truly independent thinkers to pursue flashes of insight while remaining members in good standing of their scholarly communities. While such communities are typically devoted to observing standards of excellence, they may often do so in rigidly defined ranking systems. Is there an alternative road to the pursuit of excellence?

This was the question facing Institute Founder and Director Dr. Gerald M. Edelman when he first envisioned The Neurosciences Institute over two decades ago. In his research training at The Rockefeller Institute (now University), Dr. Edelman saw an institution where basic inquiry in biomedical science was encouraged in a flexible and relatively unconstrained atmosphere. He was aware that only a few research organizations had consistently produced major breakthroughs in biomedical research. Among them were the early Rockefeller, the early California Institute of Technology, and certain contemporary colleges in the University of Cambridge, England. Rockefeller alone was responsible for more breakthroughs than any other similarly committed organization during the twentieth century.

With these organizations in mind, Edelman decided to create a "scientific monastery" where researchers could study the brain and its complex functions such as perception, learning, sleep, and consciousness. The key features of the organization he envisioned included maximum freedom for Institute scientists to explore whatever they believed would lead to an increased understanding of the human brain. This is one reason why the Institute remains independent and relies primarily upon private philanthropy. It only seeks government grants when they are without programmatic constraints.

At the Institute, no scientist is intellectually subordinate to any other, and Institute scientists are free to pursue apparently "outlandish" questions, the answers to which

may lead to new insights and breakthroughs. Members of the small but broadly interdisciplinary scientific staff can range across both experimental and theoretical approaches, leading to new directions in research.

After spending time studying the Institute, J. Rogers Hollingsworth, Ph.D., a professor of sociology, history, and industrial relations at the University of Wisconsin-Madison, believes that it shows high potential for creative breakthroughs. After his recent analysis of nearly 300 major biomedical breakthroughs produced at 200 research institutions over the period from 1900 to 1950, Dr. Hollingsworth was able to identify common characteristics in the most productive institutions. They shared small size, free funding without bureaucracy, and subject interests that were diverse but not too diverse. These characteristics promoted research that ultimately led to major scientific breakthroughs. Hollingsworth also identified certain characteristics—ever-increasing size and burgeoning bureaucratization—that can be impediments to effective scientific communication and integration.

In commenting on The Neurosciences Institute, Hollingsworth said "The Institute reminds me very much of the Rockefeller in its early, formative years. While, perhaps, it has not yet produced the major breakthroughs of the kind that win Nobel prizes, it is still a relatively young organization. Given the Institute's high potential, I believe it is only a matter of time."

ARCHITECTURE

"The Neurosciences Institute is a serene cloister that supports brain research with remarkable architecture that fuses intellect and intuition."

— Architecture Magazine

It is striking, even breathtaking at times. It engages the eye, fascinates the mind, and inspires the souls who pursue scientific breakthroughs within its walls.

From the moment you enter the campus in La Jolla, the unique architecture of The Neurosciences Institute lets you know you're in a very special place.

It was intended that way. Dr. Edelman sought an architectural style that would reflect his vision of a scientific monastery where creative study of the brain could be could be conducted with few constraining rules and unlimited opportunities for discovery and communication.

New York architects Tod Williams and Billie Tsien turned Edelman's vision into a poetic reality with a design that for nearly a decade has nurtured scientific inquiry in an environment conducive to both private reflection and interactive exchange among scientists from different disciplines.

The Institute's 56,000 square-foot complex is divided into three discrete buildings—the Theory Center, The Walsh Family Laboratories, and the Auditorium—each with its own fascinating design but all complementing and connecting with each other by walkways.

They frame a spacious central plaza with a sculptural water feature, Italian serpentine stone, and landscaping that provides a visual counterpoint to the horizontal and vertical lines of the surrounding buildings.

The overall effect is magical. So is the effect on the scientists. Almost to a person, the researchers praise the architecture, remarking that it has created a wonderful and inspirational environment that plays an important role in their ability to unravel the mysteries of the brain.

Completed in 1995, the Institute's architecture has received accolades from around the world, including a national Honor Award from the American Institute of Architects.

The

ne Neurosciences Research PROGRAM

Every so often in the history of science there is a moment when great minds come together and what is born forever alters the way we look at the world.

Such a moment came in 1962. The idea was simple: a small group of brilliant scientists from diverse backgrounds but all interested in brain function would meet regularly to share ideas about the brain.

Their driving motivation was the recognition that traditional barriers between scientific disciplines must be broken if research on higher brain functions was ever to be successful.

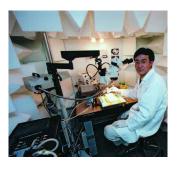
What emerged from this gathering of giants was momentous, for it was the genesis of an entirely new field of scientific endeavor we know today as the neurosciences.

With the leadership of Francis O. Schmitt, a true scientific impresario at MIT, this informal college of scholars and research scientists was organized as the Neurosciences Research Program (NRP). NRP encouraged interdisciplinary studies of the brain.

The informal college of Associates of the NRP includes 36 scientists at any one time, and each individual serves for a seven-year term. Over the past four decades, the list of current and former Associates is a veritable "who's who" of neuroscience and includes seventeen Nobel laureates. Through its over 250 meetings and 125 scientific publications, the NRP developed innovative formats for intellectual exchange and disseminated knowledge to the worldwide scientific community.


The Neurosciences Institute itself developed from NRP as an independent entity on the campus of The Rockefeller University in New York in 1981, and the NRP moved to New York from Boston in 1983 and became part of the Institute. The group of Associates continues to meet annually in La Jolla.

Nothing shows the vibrancy of the neurosciences better than the NRP's annual meeting. For three days, the Associates eagerly share their latest research, and guest speakers spark the imagination with presentations providing views of the brain and its function.


Perhaps most exhilarating are the informal discussions that break out among Associates on far-flung topics. Observing, even participating, are the bright young scientists who work at the Institute; they are thrilled to rub shoulders with these scientific leaders. NRP Associates also provide a valuable information resource for the Institute's Fellows throughout the year.

Recent Research DISCOVERIES

- ◆ Developed a testable theory about how brain functions lead to human consciousness, the most immediate yet least understood human brain function.
- ◆ Constructed one of the most advanced explanations of how the brain assembles our various sensory inputs to generate a unified "picture" of the world around us.
- ◆ Formulated viable mathematical definitions of complexity, representing an objective measure of how the brain is composed of functionally specialized parts that work together in an integrated fashion. This has important applications in determining causation and assessing risk involving such diverse subjects as environmental pollution, origins of cancer, aerospace design, and economic markets.
- ◆ Formulated theories and models of how value systems (globally acting brain systems that are stimulated by reward or punishment) shape learning and adaptive behavior.
- ◆ Designed and built brain-based devices. These are sophisticated robot-like machines that are controlled by realistic central nervous systems and are capable of learning through experience. Simulations in these devices are used to investigate how brain activity gives rise to behavior as well as learning.
- ◆ Developed the principles underlying some of the world's most advanced prototypes of prosthetic devices that are "wired" into the brain. This work may ultimately help amputees and paraplegics live more normal lives.
- Demonstrated for the first time that fruit flies sleep, providing a better understanding of the influence of genes on the crucial role of sleep in human life and health. As a result, researchers can now use fruit flies to test potential drugs and genetic treatments for aiding sleep and drowsiness. This work may lead to improved treatments for many people afflicted with sleep and vigilance disorders.
- ◆ Developed a new strategy for rapidly charting gene networks related to human disease genes and drug responses.
- ◆ Demonstrated for the first time that perception and natural motor behaviors can be transplanted between species of higher animals (chicken and quail). This finding helps identify the location of brain cells that control specific behaviors.
- ◆ Discovered that the firing sequences of neurons in the human brain's auditory cortex reflect the patterns of pitch in musical melodies and speech intonation. This finding may lead to a better understanding of the neural basis of disorders such as autism and certain types of dyslexia.
- ◆ Demonstrated that human speech and bird songs are produced by exactly the same physical mechanisms. This discovery establishes the relevance of birds as a biological model for many aspects of human vocal learning.
- Found that the brain's treatment of speech and music has greater similarity than previously thought, suggesting why music has such special significance in childhood brain development.

The Institute's *Scientific Report* describes the research in more detail and is available upon request.

Fruit Flies Sleep?

It was around noon at one of The Neurosciences Institute's remarkable collegial lunches.

At that lunch Ralph Greenspan, Ph.D., and Giulio Tononi, Ph. D., pursued the question "Do fruit flies sleep?" Greenspan, a Dorothy and Lewis B. Cullman Senior Fellow and one of the world's leaders in the study of fruit fly genetics and behavior, had recently moved to the Institute from New York University.

The query—and the answer, "I don't know"—set off a chain reaction of innovative research at The Neurosciences Institute that has vastly expanded our knowledge of how brains work and may well lead to effective new treatments for sleep-related disorders.

That question, like so many others at the Institute, was posed during one of the lunches held daily to

foster the lively and creative interchange among colleagues with training in diverse scientific disciplines.

Greenspan and several other scientists at the lunch table were so fascinated by the question

they decided to launch an immediate study to find the answer. Fortunately, the unique organization and culture of The Neurosciences Institute allowed them to do that. The fruit fly currently is the subject of intense scientific study because many of its genes have counterparts in humans, because there is a century's worth of genetic information on mutants, and because a rapid breeding cycle allows genetic manipulations to be practicable.

"Thanks to that initial challenging question, we now have a fast, high-volume first-round screening process for testing potential drugs that might play a role in curing sleep and attention-deficit disorders."

Here's what they learned and published in *Science*: Fruit flies do indeed sleep. This is important: It lays the groundwork for a better understanding of genetic influences on the critical role of sleep in human life and health.

This development means that researchers can employ fruit flies to test potential drugs and gene-based treatments for modulating sleep and drowsiness, which may lead to improved treatments for many people afflicted with sleep and vigilance disorders.

That study gave birth to a number of additional studies, each breaking new ground. One was the result of another lunchtime exchange. Only half serious, a researcher said to Doug Nitz, Ph.D., that he should be recording brain activity in fruit flies instead of rats (see story page 9).

Nitz took it on as a challenge and along with Bruno van Swinderen, Ph.D., developed microelectrodes so tiny they could in fact measure brain activity in fruit flies. Remarkably, the very first recordings were made with Nitz handholding the probe inside the fly's brain.

Meanwhile, Greenspan was working on a virtual reality setup in which flies in a fixed position could look at moving items on a screen and react to them as if they were actually flying. When van Swinderen combined this setup with the recording device, it gave the scientists a detailed model for analyzing what happens in the fly brain when it perceives something and responds to it.

HOW Do We Navigate?

Go for an early morning jog. Surf the web. Drive to the store. Tie your shoe. Prepare a holiday dinner. Walk the dog.

Those and the countless other movements we make during the day are pretty much second nature. Inside the brain, however, an amazing series of complex neurobiological processes must occur for those movements to be carried out successfully.

Thanks to the groundbreaking research of scientists at The Neurosciences Institute, we're getting an unprecedented look at how those processes work—and the possible reasons they occasionally break down or never function properly in the first place.

"We're really beginning to understand exactly how animals and humans navigate, from setting a goal, to recognizing signals of how the movement is progressing, to analyzing whether the navigation was successful," says Douglas Nitz, Ph.D., an Institute Fellow.

Key to the research is a unique recording device Nitz developed to get a high-resolution picture of how the brain organizes information to produce complex behaviors. The device, which can measure individual cell activity in multiple regions of the brain in real time, is attached to rats as they navigate through a maze to reach a food reward.

"To navigate properly, the rat must know where it is, what direction it's facing, where it came from, where the reward might be, and given all of this information, what to actually do," Nitz says. "It's a tall order, but we've discovered that rats are able to accomplish this regularly by allocating different problems to different brain regions."

For example, Nitz has found that the activity of cells in the hippocampus informs the rat about its exact location at any given time. A region called the subiculum contain cells that let the animal know the direction its "But once we understand exactly how the brain works to make those decisions, we may find ways to improve that function in people suffering from Alzheimer's disease or any number of brain disorders."

facing. And, he says, there is one area of the brain—the parietal cortex—where all the information comes together.

"It's there that all the neural signals flowing in from other regions are combined to give the rat all the pertinent information it needs concerning a given situation" Nitz says. "For instance, one cell may only respond if the rat is making a right turn in the northwest corner of the maze, and then only if it has just previously made a left turn. It is that complex, but so is the behavior."

Nitz believes the research may show that patients with brain diseases like Parkinson's and other movement disorders have a severe disruption in these processes. If so, it could lead to drug therapies or surgical techniques that might help restore some of the processes and help afflicted patients regain some or all of their normal movement ability.

Looking to the future, Nitz plans to use his research techniques to understand more fully how these multiregion brain processes drive behavioral choices.

"When we make highly informed decisions, we look like geniuses," he says.

LEARNING with NOMA

Every day it grows smarter. Every day its ability to learn from its mistakes increases. Every day it behaves more like a living, thinking organism.

With those rapidly expanding skills, NOMAD is one of the most amazing mechanical devices ever created. It was developed in the late 1980s by Dr. Edelman and his colleagues to test pioneering theories of how the brain works.

Since then, several generations of NOMADs have evolved into a new and powerful class of intelligent machines (Brain-Based Devices, or BBDs), with simulated, biologically based brains and nervous systems that can sense the environment and learn from experience.

NOMAD may look like a robot, but don't be deceived. It's many times more sophisticated and complex. This is partly because its behavior is not controlled or restricted by a set of computer software instructions as true robots are. Instead, NOMAD was designed using the principles of neuroanatomy and neurophysiology derived from knowledge of real brains. With its array of sensing devices, NOMAD not only perceives its environment, but it also learns and retains for future decision-making whatever it sees, feels, touches, or hears.

The government agency DARPA is extremely interested in BBDs and has given the Institute a grant to assist in their development. Part of the grant includes a special scientific version of the two-wheeled Segway Human

Transporter (HT) with its innovative balancing technology. The Segway Robotic Mobility Platform (RMP) is a highly mobile and rugged platform that will allow the team to take a BBD outdoors for the first time.

One of the goals is to participate in robotic soccer competitions with teams from around the world. The rules so far dictate that each team consist of an autonomous Segway RMP and a human on a Segway HT. The RMPs must have the ability to both catch and kick a ball. All sensing, actuating, and computing are local to the device. The Neurosciences Institute and Carnegie Mellon University have each put together teams and demonstrated their robotic soccer-playing capabilities at the U.S. Open RoboCup Championships in New Orleans last April. It is hoped that Segway Soccer will be an official RoboCup league in 2005.

The BBD using the Segway platform is specifically designed to play soccer. It has a video camera to recognize objects on the field (e.g., balls, teammates, goals, etc.), infrared sensors to detect the ball and obstacles, and mechanical devices to capture and kick the ball. The output of the simulation generates motor signals to the Segway's wheels.

The neural simulation has control areas based on color and shape processing areas in the primate visual cortex, motor areas, and a brain value system that responds to salient objects. It uses the same principles of image processing, visual categorization, reentrant signaling, and value-dependent learning as the previous NOMAD devices.

The soccer-playing BBD successfully learned key elements of soccer playing: ball chasing, passing back and forth between itself and a human teammate on a Segway HT, and goal kicking. Video clips of the device's soccer-playing capabilities can be found at http://www.nsi.edu/nomad/segway.

For researchers at The Neurosciences Institute, the development of BBDs offers an unprecedented opportunity to explore how brain activities influence behavior and learning. And for the rest of the world, the ability of BBDs to someday go where humans can't—and to think and react on their own to what they encounter—make their future development truly mind-boggling.

OTHER Ongoing Research

Caffeine stimulates the firing of striatal neurons

Music...A Unique Window into the Brain

Listening to a symphony, pop ballad, a children's choir, or any other form of music is one of life's greatest pleasures. That intricate process we take for granted also delights researchers at The Neurosciences Institute because it provides a treasure trove of exciting new insights into how the brain works.

By studying how the brain processes rhythm and melody in music, Institute scientists are able to examine the intimate relationship between auditory and motor systems as well as study music's relationship with language. One example: researchers showed how the firing sequences of neurons in the human auditory cortex reflect the patterns of pitch in musical melodies. They also found that the neural systems the brain uses to process speech and music have greater similarities than previously thought.

Thanks to real-time measurement of brain activity of people listening to music, scientists now have a much better understanding of how different brain areas interact in perception and behavior.

Ultimately, this research may lead to development of new techniques to address how the brain processes patterns in time, which in turn could lead to a better understanding of the biological bases of autism, dyslexia, and auditory processing disorders.

Caffeine and the Brain

We all know that a cup of coffee, thanks to caffeine, provides a lift that helps us get going in the morning. Researchers at The Neurosciences Institute have discovered the stimulant may have potentially more significant value, including its role in eliminating the involuntary tremors that plague patients with Parkinson's disease.

The scientists have shown that caffeine can regulate the number of dopamine receptors that are produced in the basal ganglia, a brain region involved in the control of voluntary and involuntary movements. The dopamine receptor is a molecule on certain neurons that responds to the neurotransmitter dopamine, a key player in regulating motivation and movement. Institute researchers also showed for the first time that the expression of a dopamine receptor is increased in female but not male mice upon administration of caffeine.

One of the primary targets for the action of caffeine in the basal ganglia is a region called the striatum, which has a large concentration of dopamine receptors. When Parkinson's disease occurs, the amount of dopamine produced in the brain decreases, resulting in less activity in the striatum. The research at the Institute provides new information for understanding how caffeine and similar drugs may protect neurons and ameliorate movement disorders in Parkinson's disease.

The study shows promise for understanding why humans become tolerant to the effects of caffeine and why withdrawal may be difficult and even painful.

Research PUBLICATIONS 2004

Articles in Press

Edelman, D.B., B. Baars, and A.K. Seth Identifying hallmarks of consciousness in non-mammalian species. *Conscious. Cogn.*

Edelman, D.B., and E.W. Keefer A cultural renaissance: In vitro cell biology embraces three-dimensional context. *Exp. Neurol.*

Izhikevich, E.M., and F.C. Hoppensteadt Burst mappings. *Int. J. Bif. Chaos* 14.

Krichmar, J.L., and G.M. Edelman Brain-based devices for the study of nervous systems and the development of intelligent machines. *Artificial Life*.

Makarenkova, H., H. Sugiura, K. Yamagata, and G.C. Owens Alternatively spliced variants of protocadherin 8 exhibit distinct patterns of expression during mouse development. *BBA: Gene Structure and Expression.*

Patel, A.D., J.M. Foxton, and T.D. Griffiths Musically tone-deaf individuals have difficulty discriminating intonation contours extracted from speech. *Brain Cogn.*

Patel, A.D., J.R. Iversen, Y. Chen, and B. Repp The influence of metricality and modality on synchronization with a beat. *Exp. Brain Res.*

Seth, A.K., B. Baars, and D.B. Edelman Criteria for consciousness in humans and other mammals. *Conscious. Cogn.*

Seth, A.K., and B. Baars Neural Darwinism and consciousness. *Conscious. Cogn.*

Seth, A.K., D.B. Edelman, and B. Baars Let's not forget about sensory consciousness (continuing commentary). *Behav. Brain Sci.*

Siegel, J.J., D.A. Nitz, and V.P. Bingman Spatial selectivity of single units in the hippocampal formation of freely moving homing pigeons. *Hippocampus*.

Stonehouse, A.H., and F.S. Jones Bromocriptine and clozapine regulate dopamine 2 receptor gene expression in the mouse striatum. *J. Molecular Neuroscience*.

van Swinderen, B., and R.J. Greenspan Flexibility in a gene network affecting a simple behavior in *Drosophila melanogaster*. *Genetics.*

van Swinderen, B. The remote roots of consciousness in fruit-fly selective attention. *BioEssays*.

Articles Published

Patel, A.D., and E. Balaban (2004) Human auditory cortical dynamics during the perception of long acoustic sequences: Phase tracking of carrier frequency by the auditory steady-state response. *Cerebral Cortex* 14:35-46.

van Swinderen, B., D.A. Nitz, and R.J. Greenspan (2004) Uncoupling of brain activity from movement defines arousal states in *Drosophila*. *Current Biology* 14:81-87.

Nitz, D.A., and B.L. McNaughton (2004) Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. *J. Neurophysiol.* 91:863-872.

Edelman, G.M. (2004) Biochemistry and the sciences of recognition. *J. Biol. Chem.* 279:7361-7369.

Izhikevich, E.M. (2004) Is there a contradiction between biological plausibility and computational simplicity of neuronal models? *IEEE Connections* 2:6.

Greenspan, R.J. (2004) Systems neurobiology without backbones. *Current Biology* 14:R177-R179.

Dierick, H. (2004) Selection for aggressive behavior in *Drosophila melanogaster. Drosophila Research Conf. Abstr.*, 45:119.

Broughton, S.J., T. Kitamoto, and R.J. Greenspan (2004) Excitatory and inhibitory switches for courtship in the brain of *Drosophila melanogaster. Current Biology* 14:538-547.

Stevens, T.A., J.S. Iacovoni, D.B. Edelman, and R. Meech (2004) Identification of novel binding elements and gene targets for the homedomain protein BARX2. *J. Biol. Chem.* 279:14520-14530.

Coop, A.D., and G.N. Reeke, Jr. (2004) Estimating the afferent and efferent temporal interval entropy of neuronal discharge for single spike trains. *Neural Computation* 16:941-970.

Greenspan, R.J. (2004) E pluribus unum, ex uno plura: Quantitative- and single-gene perspectives on the study of behavior. *Ann. Rev. Neurosci.* 27:79-105.

Salbaum, J.M., C. Cirelli, E.C. Walcott, L.A. Krushel, G.M. Edelman, and G. Tononi (2004) Chlorotoxin-mediated disinhibition of noradrenergic locus coeruleus neurons using a conditional transgenic approach. *Brain Res.* 1016:20-32.

Izhikevich, E.M., J.A. Gally, and G.M. Edelman (2004) Spike-timing dynamics of neuronal groups. *Cerebral Cortex* 14:933-944.

Kargo, W.J., and D.A. Nitz (2004) Improvements in the signal-to-noise ratio of motor cortex cells distinguish early versus late phases of motor skill learning. *J. Neurosci.* 24:5560-5569.

- Seth, A.K., J.L. McKinstry, G.M. Edelman, and J.L. Krichmar (2004) Visual binding through reentrant connectivity and dynamic synchronization in a brain-based device. *Cerebral Cortex* 14:945-954.
- **Seth, A.K., and G.M. Edelman** (2004) Environment and behavior influence the complexity of evolved neural networks. *Adaptive Behavior* 12:5-21.
- **Iversen, J.R., A.D. Patel, and K. Ohgushi** (2004) Perception of nonlinguistic rhythmic stimuli by American and Japanese listeners. *Proc. of the 8th Intl. Congress of Acoustics, Kyoto, Japan.*
- **Seth, A.K., J.L. McKinstry, G.M. Edelman, and J.L. Krichmar** (2004) Texture discrimination by an autonomous mobile brain-based device with whiskers. *Proc. of the 2004 IEEE Conference on Robotics and Automation*:4925-4930.
- Owens, G.C., C.T. Fredrickson, and E.W. Keefer (2004) Development of a feline immunodeficiency virus-based lentiviral vector for genetic modification of CNS neurons. *Molecular Therapy* 9:S280.
- McKinnell, I.W., H. Makarenkova, I. de Curtis, M. Turmaine, and K. Patel (2004) EphA4, RhoB and molecular development of feather buds are maintained by the integrity of actin cytoskeleton. *Dev. Biol.* 270:94-105.
- **Greenspan, R.J.** (2004) Fly Pushing: The Theory and Practice of *Drosophila* Genetics. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press.
- Seth, A.K., J.L. McKinstry, G.M. Edelman, and J.L. Krichmar (2004) Spatiotemporal processing of whisker input supports texture discrimination by a brain-based device. In *Animals to Animats 8: Proc. of the 8th Intl. Conference on the Simulation of Adaptive Behavior,* S. Schaal, A. Ijspeert, A. Billard, S. Vijayakumar, J. Hallam, and J. Meyer, eds., pp. 130-139, The MIT Press, Cambridge, Massachusetts.
- **Daniele, J.R., and A.D. Patel** (2004) The interplay of linguistic and historical influences on musical rhythm in different cultures. In *Proc. of the 8th Intl. Conference on Music Perception and Cognition.*, S.D. Lipscomb, R. Ashley, R.O. Gjerdingen, and P. Webster, eds., pp. 759-762, Adelaide: Causal Productions.
- **Patel, A.D., J.R. Iversen, and P. Hagoort** (2004) Musical syntactic processing in Broca's aphasia: A preliminary study. In *Proc. of the 8th Intl. Conference on Music Perception and Cognition*, S.D. Lipscomb, R. Ashley, R.O. Gjerdingen, and P. Webster, eds., pp. 797-800, Adelaide: Causal Productions.
- **Gally, J.A., and G.M. Edelman** (2004) Neural reapportionment: An hypothesis to account for the function of sleep. *Comptes Rendus Biologies de l' Academie des Sciences* 327:721-727.
- **Coop, A.D., and G.N. Reeke, Jr.** (2004) Control of neuronal discharge timing by afferent fiber number and the temporal pattern of afferent impulses. *J. of Integrative Neuroscience* 3:319-342.
- **Dean, C., M. Ito, H. Makarenkova, and R.A. Lang** (2004) BMP7 regulates branching morphogenesis of the lacrimal gland by promoting mesenchymal proliferation and condensation. *Development* 131:4155-4165.
- **Greenspan, R.J., and H. Dierick** (2004) 'Am not I a fly like thee?' From genes in fruit flies to behavior in humans. *Hum. Mol. Genet.* 13:R267-R273.
- **Greenspan, R.J., and B. Baars** (2004) Consciousness eclipsed: Jacques Loeb, Ivan P. Pavlov, and the triumph of reductionist biology after 1900. *Conscious. Cogn.*: doi:10.1016/j.concog. 2004.09.004.

- **Izhikevich, E.M.** (2004) Which model to use for cortical spiking neurons? *IEEE Trans on Neural Networks* 15:1063-1070.
- Seth, A.K., and G.M. Edelman (2004) Theoretical neuroanatomy: Analyzing the structure, dynamics, and functions of neuronal networks. In *Complex Networks*, E. Ben-Naim, H. Frauenfelder, and Z. Toroczkai, eds., pp. 483-511, Springer-Verlag, Berlin.
- **Greenspan, R.J.** (2004) The varieties of selectional experience in behavioral genetics. *J. Neurogenetics* 17:241-270.
- **Adachi, M., and F.S. Jones** (2004) Studies on the MeCP2 gene promoter in neuronal cells. *Soc. Neurosci. Abstr.* 29:239.20.
- **Iversen, J.R., and A.D. Patel** (2004) Physical and cognitive modulation of the auditory steady-state response during bistable auditory stream segregation. *Soc. Neurosci. Abstr.* 29:200.8.
- **Izhikevich, E.M.** (2004) Which model to use for cortical spiking neurons? *Soc. Neurosci. Abstr.* 29:517.2.
- **Kargo, W.J., and D.A. Nitz** (2004) Mice adapt phasic and tonic components of frontal cortical ensemble activity during action sequence learning. *Soc. Neurosci. Abstr.* 29:771.14.
- **Quinn, L.K., A.A. Chiba, and D.A. Nitz** (2004) Experience-dependent bursts of beta-frequency oscillations in the basal forebrain of rats performing an associative learning task. *Soc. Neurosci. Abstr.* 29:667.10.
- **Siegel, J.J., D.A. Nitz, and V.P. Bingman** (2004) Lateralized response properties of hippocampal neurons recorded from freely behaving pigeons. *Soc. Neurosci. Abstr.* 29:667.7.
- **Walcott, E.C., and N.J. Desai** (2004) Muscarinic modulation of intrinsic currents in rat forelimb motor cortex. *Soc. Neurosci. Abstr.* 29:516.9.
- **Zheng, W.** (2004) Expansion of frequency spatial representation in the dorsal cochlear nucleus induced by chronic exposure of adult rats to low-level white noise. *Soc. Neurosci. Abstr.* 29:304.17.
- Patel, A.D., J.R. Iversen, and J.C. Rosenberg (2004) Comparing rhythm and melody in speech and music: The case of English and French. *J. Acoust. Soc. Am.* 116:2645.
- Atkins, A.R., W.J. Gallin, G.C. Owens, G.M. Edelman, and B.A. Cunningham (2004) NCAM homophilic binding mediated by the two N-terminal Ig domains is influenced by intramolecular domain-domain interactions. *J. Biol. Chem.* 279:49633-49643.
- **Greenspan, R.J., and B. van Swinderen** (2004) Cognitive consonance: Complex brain functions in the fruit fly and its relatives. *Trends Neurosci.* 27:707-711.
- Seth, A.K., J.L. McKinstry, G.M. Edelman, and J.L. Krichmar (2004) Active sensing of visual and tactile stimuli by brain-based devices. *Intl. Journal of Robotics and Automation* 19:222-238.
- **Greenspan, R.J.** (2004) Genetics of behavior. In *Storia della scienza*, S. Petruccioli, ed., pp. 515-527, Instituto della Enciclopedia Italiana.

Library ROUNDTABLES

he Neurosciences Institute presents its own community lecture series, the Library Roundtable program. Offered 2-3 times per year at no charge to the public, these lectures are delivered by leading figures in science and technology as well as in other fields that pertain to brain science. The lectures are followed by question-and-answer sessions moderated by Dr. Edelman. Following the discussion, guests enjoy the opportunity to engage in stimulating conversation over drinks and hors d' oeuvres. Past Library Roundtable programs include:

Time Flies Like an Arrow, but Fruit Flies Like a Banana* Ralph J. Greenspan, Ph.D.

Dorothy and Lewis B. Cullman Senior Fellow in Experimental Neurobiology The Neurosciences Institute February 28, 2001

Music and the Brain* Aniruddh D. Patel, Ph.D.

Esther J. Burnham Fellow in Theoretical Neurobiology The Neurosciences Institute April 25, 2001

Creativity, Nobel Prizes, and Major Discoveries*

J. Rogers Hollingsworth, Ph.D.

Professor of Sociology, History and Industrial Relations Chairperson, Graduate Program in Comparative History University of Wisconsin-Madison *June 19, 2001*

How Did Things Ever Get So Darned Complicated?*

Nicholas C. Spitzer, Ph. D.

Professor and Chairman, Department of Neurobiology University of California San Diego Associate, Neurosciences Research Program November 7, 2001

Once More With Feeling: The Return of the Science of Emotion*

Antonio R. Damasio, M.D., Ph.D.

Van Allen Professor and Head Department of Neurology University of Iowa College of Medicine Associate, Neurosciences Research Program February 4, 2002

The Cosmos and the Brain: Exploring **Our Final Frontiers**

The Honorable Daniel S. Goldin Immediate Past Administrator of NASA

(National Aeronautics and Space Administration) Visiting Fellow, The Neurosciences Institute July 11, 2002

Eyes Believe What They See; **Ears Believe Others**

Paul J. Orfalea

Founder and Chairperson Emeritus, Kinko's Inc. September 17, 2002

Neural Darwinism: A Framework for Transforming and Reinvigorating Undergraduate Education*

Dr. Elizabeth Coleman

President, Bennington College Bennington, Vermont Visiting Fellow, The Neurosciences Institute February 5, 2003

How Basic Neuroscience Gives Hope for Parkinson's Disease*

Floyd E. Bloom, M.D.

Immediate Past Editor-in-Chief, Science Chairman and Professor, Department of Neuropharmacology, The Scripps Research Institute Honorary Associate, Neurosciences Research Program June 19, 2003

The Neuroscience of Learning Disabilities Michael M. Merzenich, Ph.D.

Francis A. Sooy Chair of Otolaryngology Keck Center for Integrative Neurosciences University of California at San Francisco Honorary Associate, Neurosciences Research Program February 3, 2004

The Weaving of Our Risk: How Genes and Environment Together Contribute to Psychiatric Illness*

Kenneth S. Kendler, M.D.

Rachel Brown Banks Professor of Psychiatry Professor of Human Genetics Medical College of Virginia Virginia Commonwealth University *June 14, 2004*

Performing Arts at The Neurosciences Institute

he relationship between music and the human brain represents a special focus of research at The Neurosciences Institute. Although innovative and unique, our work in understanding those brain functions that enable us to create and appreciate music is only in its infancy. We believe that the quality of human life can be substantially enhanced by furthering research about how the brain perceives and conceives music and art.

In keeping with our commitment to research in this important arena, the Institute's Auditorium is made available without charge to many distinguished arts and educational organizations for concerts and educational presentations. This program, "Performing Arts at The Neurosciences Institute," represents a service to the local community that is designed both to encourage and support the performing arts and to underscore the special relationship between the arts and the human brain.

"Performing Arts at The Neurosciences Institute" effectively saves our local arts organizations over \$300,000 per year. Since the program's inception, over 50 organizations have held over 250 performing arts and educational events at the Institute.

Organizations who used the Institute's facilities in 2003-2004 include:

American Harp Society Athenaeum Music & Arts Library California Institute of Music Camarada Center for World Music Girls Scouts, San Diego The Hutchins Consort IMAGES Theatre La Jolla Country Day School La Jolla Music Society La Jolla Symphony and Chorus Mainly Mozart Pandit Jasraj School of Music Foundation Persian Cultural Center Playwrights Project San Diego Ballet San Diego Folk Heritage San Diego Harpsichord Society San Diego Master Chorale San Diego Opera Seagate Concerts, Inc. Second Avenue Klezmer Ensemble The Snapshots Music Foundation Soille San Diego Hebrew Day School Taiwanese American Foundation UCSD Nikkei Student Union Westwind Brass Young Artists International

2004 Honorary Committee

Iinx Ecke Honorary Chair Toni & John Bloomberg Susan Borden Esther Burnham Patricia Dwinnell Butler Audrey Geisel & Alexander Butterfield Ann Campbell Maxine Edelman Merle & Teresa Fischlowitz Joyce Gattas Hon. Daniel S. Goldin & Mrs. Judy Goldin Tom & Cindy Goodman Jay & Lael Kovtun Lyn Krant Marvin & Reinette Levine Elaine Lipinsky Jeffrey & Sheila Lipinsky JoBobbie MacConnell & **Guy Showley** Esther Nahama Judith C. Harris & Robert Singer, M.D.

2004 Committee

Deborah Szekely

Jack & Judy White

Linda Satz, Chair Mainly Mozart Patricia Carter Joy Charney Robin Comer Berit Durler Doris Ellsworth Kathleen Bell Flynn Einar Gall The Neurosciences Institute Sally Gall Alyson Goudy Lucy Haugh Yuki May Imai The Neurosciences Institute Mary Johnson Rachel Ionte The Neurosciences Institute Melissa Marquardt Veryl Mortenson Toni Woodward Nickell Kay Gillette North

Deborah Salzer Playwrights Project Sharrie Woods

n Sunday, September 12, The Neurosciences Institute's second annual Minding the Arts fundraising event was held. A magnificent success, the event raised over \$185,000 for the Institute's performing arts program, in which the acclaimed auditorium is made available at no charge to local non-profit arts and educational organizations. The Institute incurs costs of over \$300,000 per year to continue providing this community service—which many local arts groups have come to rely upon in order to continue their programming. These expenses include energy for lighting and climate control, maintenance, cleaning, security, and program management.

Chaired by Linda Satz of Mainly Mozart, with Institute Trustee Jinx Ecke as Honorary Chair, the organizing committee planned this extraordinary event for over 300 guests.

Minding the Arts' unique afternoon format began with a lovely outdoor cocktail reception amidst the stunning architecture of the Institute's campus, featuring a tempting array of gourmet food and beverages from San Diego's finest purveyors. Guests were further indulged with a private concert in the Auditorium that included performances by the remarkable

The reception is graced by the sounds of a string quartet provided by the California Institute of Music

Toni Bloomberg, Veryl Mortenson, John Bloomberg and Cherie Halladay

Hutchins Consort, the noted Paul Sundfor jazz trio, and the talented San Diego Opera Ensemble.

Ian Campbell, General Director of San Diego Opera and the evening's Master of Ceremonies, brilliantly provided music/science anecdotes during the transition periods, providing fascinating insights about the performances.

Minding the Arts is an annual event that helps cover the costs to the Institute of providing this unique venue free-of-charge. Minding the Arts 2005 will be held on September 25, 2005 and is once again being chaired by Linda Satz. For more information, email Rachel Jonte at jonte@nsi.edu.

Event Chair Linda Satz with Institute Founder and Director Dr. Gerald Edelman and Honorary Chair Jinx Ecke

Arlene Ballerini and Richard Esgate with Reinette and Marvin Levine

John Hardy and Jean Hahn Hardy with Audrey Geisel and Alexander Butterfield

Drs. Charles Kennel and Ellen Lehman Kennel with Drs. Sally and Einar Gall

We'd like to give special thanks to all of the generous sponsors, entertainment donors, and catering donors whose generosity made this event a success!

SPONSORS

The San Diego Foundation, Isabella Fund
The San Diego Foundation, Dr. Seuss Fund
Mandell Weiss Charitable Trust
La Jolla Bank
Merck Research Laboratories—San Diego
Pfizer, Inc.
Doris and Peter Ellsworth
The San Diego Foundation, Weingart-Price Fund
Circle of Service Foundation
Susan & Robert Borden

CATERERS

Best Beverage Catering Company
Denise Overson and Patricia Wenger
specializing in afternoon teas
Elegant Events Catering Company
The Fish Market, Del Mar
Festivities Catering
George's at the Cove
Grey Goose Vodka
Karl Strauss Brewing Company
Laurel Restaurant & Bar
Orfila Vineyards & Winery
Pearl Chinese Cuisine
Tapenade Restaurant
TK&A Custom Catering

ENTERTAINMENT

American Harp Society—San Diego Chapter California Institute of Music Seagate Concerts, Inc. The Hutchins Consort San Diego Opera

Special RECOGNITION

We would like to recognize the following contributors for their support of specific programs. Your investment has been instrumental in the success of these projects.

Library Roundtable Program

Bell Charitable Foundation

Drosophila (Fruit Fly) Research

American Health Assistance Foundation,
Alzheimer's Disease Research
Edward C. Johnson Fund
National Science Foundation
The Wacker Foundation

Performing Arts and Educational Program

Thomas C. Ackerman Foundation
Charles and Ruth Billingsley Foundation
Donald C. and Elizabeth M. Dickinson Foundation
Pfizer, Inc.

Rett Syndrome Research

International Rett Syndrome Association

Music and the Brain Research Program

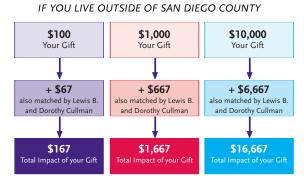
H.A. and Mary K. Chapman Charitable Trust The Favrot Fund

Named Fellowships

Esther J. Burnham — Aniruddh Patel, Ph.D.
Estate of David Clayson — Douglas Nitz, Ph.D.
Dorothy and Lewis B. Cullman — Joseph Gally, Ph.D.
Dorothy and Lewis B. Cullman — Ralph Greenspan, Ph.D.
The Karp Foundation — John Iversen, Ph.D.
The San Diego Foundation, Blasker-Rose-Miah Fund — James Snook

Brain-Based Devices

DARPA W.M. Keck Foundation


Donor Acquisition Program

Legler Benbough Foundation Dorothy and Lewis B. Cullman Orfalea Family Foundation

The Benbough and Cullman Challenges—Leverage Your Gift to The Neurosciences Institute

IF YOU LIVE IN SAN DIEGO COUNTY

\$100 \$1,000 \$10,000 Your Gift Your Gift + \$100 + \$1,000 + \$1,000 matched 1:1 by The Legler matched 1:1 by The Legler matched 1:1 by The Legler Benbough Foundation Benbough Foundation Benbough Foundation + \$7,333 + \$133+ \$1.333 also matched by Lewis B. also matched by Lewis B. also matched by Lewis B. and Dorothy Cullman and Dorothy Cullman and Dorothy Cullman \$333 \$3,333 \$18,333 Total Impact of your Gift otal Impact of your Gif

Matching gift amounts are based on the following criteria: First-time gifts from San Diego County residents receive a maximum Benbough match of \$1,000. All gifts are then matched by 2/3.

Acknowledging Our DONORS

This list reflects gifts received between January 1, 2000 and November 1, 2004.

\$5,000,000 and up

Lewis B. and Dorothy Cullman

\$1,000,000 up to \$4,999,999

DARPA / ONR

The Schnurmacher Foundations William and Jane Walsh

\$500,000 up to \$999,999

David Clayson Estate W. M. Keck Foundation

\$250,000 up to \$499,999

The Legler Benbough Foundation The C.O.U.Q. Foundation, Inc. Four Friends Foundation

\$100,000 up to \$249,999

Arthur G. Altschul, Jr.
The San Diego Foundation,
Blasker-Rose-Miah Fund
Esther J. Burnham
The Hearst Foundations
Edward C. Johnson Fund
The Ambrose Monell Foundation
Malcolm Hewitt Wiener Foundation

\$50,000 up to \$99,999
Alafi Family Foundation
Bell Charitable Foundation
Susan and Robert Borden
H. A. and Mary K. Chapman
Charitable Trust
Circle of Service Foundation
Donald C. and Elizabeth M. Dickinson
Foundation
The Joseph Drown Foundation
Elisabeth "Jinx" Kenney Ecke
Friends of NRF Canada, Inc.
International Rett Syndrome
Association

Association
Harvey L. Karp
Orfalea Family Foundation
The Overbrook Foundation
The Parker Foundation
The Ralph M. Parsons Foundation
Alberto and Christine Vollmer
Mandell-Weiss Charitable Trust

\$25,000 up to \$49,999

Alzheimer's Disease Research-American Health Assistance Foundation Peter Bevelin John and Barbara Costantino Martin and Carol Dickinson Earl and Kim Eastman Anthony and Gay Frank The Wacker Foundation Charles R. Wall Faye Wilson

\$10,000 up to \$24,999

The Thomas C. Ackerman Foundation Altria Group, Inc. Anonymous (2) Charles and Ruth Billingsley Foundation Sophie and Arthur Brody Michael and Jean Collins Spencer Davidson Gerald and Maxine Edelman Peter and Doris Ellsworth The Favrot Fund Samuel J. and Katherine French Fund Einar and Sally Gall Audrey Geisel/The San Diego Foundation, Dr. Seuss Fund J. Rogers and Ellen Jane Hollingsworth Lawrence E. Kline, M.D. Christopher S. McKellar David L. Mitchell and Judith L. Bradley Vijaya K. Pedapudi The Robins Family Foundation The San Diego Foundation, Weingart-Price Fund William R. Stensrud Charles and Renee Taubman WWW Foundation

\$5,000 up to \$9,999 Alan Bersin and Lisa Foster

Patricia Dwinnell Butler Kathryn Colachis Maurice J. Cunniffe Paul and Joyce Dostart Anne L. Evans Beverley B. and Edmond H. Fischer The Fremont Group Foundation Leon and Mary Kay Jaroff Sydney Kessler Estate Kimberly Heller Charitable Gift Fund La Jolla Bank Lynne and Burt Manning Betty and John Moore National Science Foundation Pfizer, Inc. The San Diego Foundation, Ivor and Colette Carson Royston Fund Donald and Darlene Shiley Sleep Medicine Education and Research Foundation Anthony and Jill Sorge

\$2,500 up to \$4,999

John E. Abele **Barrow Family Foundation** Henry P. Becton, Sr. Jack and Katherine Bevash The Ecke Family Edward R. Chaplin William and Robin Comer Anonymous Robert and Susan de Rose The Ray Thomas Edwards Foundation First Security Van Kasper William Gedale and Katie Brown William T. Golden Harrison & Shriftman Lucy and James Haugh Mary and Robert Knight Eugenie Marron Merck Research Laboratories -San Diego Toni and Tom Nickell Oregon Health Sciences Foundation Dr. Leonard Pellettieri and Ms. Mary B. Rose The San Diego Foundation, J. Dallas and Mary H. Clark Fund Kenneth Selzer Sempra Energy The Jerry and Emily Spiegel Family Foundation, Inc. Fred C. Stalder Mrs. William H. Sweet Szekely Family Foundation Nancy L. Vaughan Tom and Nell Waltz Warren Family Foundation Ira I. Weinstein

Continued from page 19

\$1,000 up to \$2,499 Katherine M. Adams

Mark and Yanina Adler Richard and Pat Amtower Toni and John Bloomberg James and Barbara Bode Paul J. Bowron, Jr. Robert and Lillie Breitbard Foundation The Burnham Foundation Richard A. Bywaters Cathryn Campbell John and Mary Carrington Hugh and Patricia Carter Mr. and Mrs. Thomas E. Cisco Elizabeth Coleman Luanne Corea Judy Courtemanche **Cushman Family Foundation** Robert and Nina Doede Berit and Tom Durler Peter Farrell Clem and Genia Finch John Patrick Ford General Atomics Apostolos Georgopoulos Julian B. Grafa Judith Harris and

Dr. Robert Singer James and Barbara Hartung Kathryn and John Hattox Susan Stone Hayes Edward E. Hucke Rebecca P. Ivans Natasha Iosefowitz Henry and Nona Killmar Dr. and Mrs. Dale Kooistra Robert and Susan Lankford Ed and Betty Law The Lipinsky Family Foundation Sarah Markarian William R. Martin William and Barbara McColl The Melin Family Foundation Edward M. Messina Homer and Lorraine Moore Veryl Mortenson Eva C. Nahas Glenn Napierskie New Hope Charitable Foundation

Sigrid Pate and Glenn Butler Planned Parenthood of San Diego & Riverside Counties Dev Purkavastha Anne F. Ratner Bryn and Tony Reina Bryce and Susan Rhodes Nicola Rinaldi Ierome Robbins Foundation Katharine Rosenberry Duane J. Roth The Russell Agency San Diego National Bank Joseph and Linda Satz Morton and Marjorie Shaevitz Randall Smith Norman Somach Jeanette Stevens Eli and Ruth Strich

Gretchen and L. Jay Tenenbaum Erika Torri Raymond S. Troubh Jocelyn and Richard Vortmann Mike Wilkins Joseph and Vivian Wong

\$500 up to \$999

Avigdor Arikha Bill and Joan Arnold Mr. and Mrs. Mogens Bildsoe Grant Castillou Nancy Chappie Joy and Jack Charney Dallas and Mary Clark Ruth and Nathaniel Cohen F. Patrick and Margaret Crowell Dawn O. Douglas Mr. and Mrs. Daniel Epstein Ron and Sandy Erbetta Richard Esgate Jane Trevor Fetter and

Thompson Fetter Merle and Teresa Fischlowitz Theodore L. Folkerth Bristol-Myers Squibb Foundation Elaine and Murray Galinson Mary Ann and Arnold Ginnow Hon. Daniel S. Goldin and Mrs. Judy Goldin

Drs. Cynthia and

Thomas Goodman Leonard Gosink Ralph Greenspan and Dani Grady Jean Hahn Hardy and John Hardy William Jr. and Florence Hawkins The Home Depot USA Peter Barton Hutt Nancy and David James Mr. and Mrs. George Johnson

Rachel and Justin Jonte David and Barbara Karle Charles Kennel and Ellen Lehman Paul Kennerson Neil Kjos, Jr. Stephen and Lyn Krant Phyllis Kravitch Leonard Lasken

Nancy Laturno Michael J. Lerner Marvin and Reinette Levine Arthur and Anni Lipper JoBobbie MacConnell

Robert F. McGivern John Meyers and Betty Joan Maly Harle Montgomery Richard and Colette Murray

Shigetada Nakanishi Josiah and Rita Neeper William E. Nelson

Richard J. Roberts Gill and Noel Robinson Oscar M. Ruebhausen Thomas V. Ruta

The San Diego Foundation William and Sally Scharf Jeffrey A. Segol

Renata Shafor Drs. Arkal and Vasanthi Shenoy Lewis and Alice Silverberg Mickey Stern

Joseph T. Stewart, Jr.

Dr. and Mrs. John J. Taddey Joe and Ann Tebo Carol and Larry Veit Conrad C. Wan Isabelle and Mel Wasserman Stephen and Linda Wasserman Patricia and Christopher Weil JoAnn G. Wellner Bebe L. Zigman

\$100 up to \$499

Tammy M. Adams La Jolla Music Society Dr. and Mrs. Ranya Alexander Daniel and June Allen Willis M. Allen Company Diana Amsden Mr. and Mrs. Augusto Angelucci Anonymous Judith Bachner Daniel R. Baker Lois Baker Bank of America Matching Gift Fund Dr. Peter Baram Marcia A. Bechard Louise Becker G. Patricia Beckman Robert S. Bell Herman and Joan Bergman Chuck Berke Joan Bernstein Charles Berwanger Norman Blachford Roger and Marilynn Boesky Cantor Alisa and Stephen Boro Dr. Sara Boswell Iames L. Bowers Mrs. Bruce Bradbeer Mr. and Mrs. James Brayshay Wilbur T. Breckenridge, Jr. Barbara Broderick Steven A. Brody, M.D., Ph.D. Joan Brunner Ashley Ann Bullitt Ned and Kathleen Buoymaster Christa Burke MaryBeth Burnham Dr. Neal L. Burstein Mary Ann Calcott Edward W. Callan Ann and Ian Campbell Ann Carpy Ward A. Cavanaugh John Cella, III Ronald A. Chez, M.D. Lorna G. Christensen Joann Clark Dr. Neil Clendeninn Guy C. Clum Leslie J. Cohen Richard Cohn D.M.J. Compton Mr. and Mrs. Carl R. Comstock, III James and Elizabeth Barrett

Connor

Loraine Costa

Kenneth G. Coveney

Frederick Daitch Thomas Dalton Euphemia Davis Ted Delevoryas Gerald and Bozier Demaree Sukhendu B. Dev Forrest Dewey Thomas J. Dobransky and Associates Joseph and Vivian Doering Drew Dougherty Edward and Edith Drcar Silvia C. Dubovoy, Ph.D. Jeff Dunigan Zofia Dziewanowska John Eberhard David Edelman Robert and Eleanor Ellsworth Jeane F. Erley Mr. and Mrs. Edward Etess Garold and Joyce Faber Robert and Esther Feier Dr. John D. Ferguson Mr. and Mrs. William E. Ferguson Tomas E. Firle Bena Fisher Steve and Kathleen Bell Flynn Golnar J. Fozi Milton Fredman Dennis Fredrickson Mitchell and Debbie Friedlaender Julie Fry George and Martha Gafford Julius J. Garcia Nancy Garland Grant Gauger, M.D. L. Gene Gault Mr. and Mrs. Walter Gault Dr. and Mrs. Hyman Gaylis Dr. Nancy Giberson Milton Glaser George A. Glickman Judith Glickman Elaine and Stan Goff Richard Gomez, M.D. Alyson Goudy Bonnell Goycochea, Ph.D. Carolyn and Jimmie Greenslate Hank and Mary Ellen Gregg L. Guske Sam and Carolyn Gusman Cherie Halladay John P. Harden Kay and Edgar Hardy Lee Hart Leonard and Frances Hart Jerome J. Haydon

Juanita C. Hayes Doug Hegebarth Judith R. Heggie Chuck and Sheila Heightland Leslie Hendrickson Robert and Elizabeth Hess Dr. Richard Hill Laurie Hinzman Dr. James M. Holcomb David and Elisabeth Cooper Charles F. Hopp G. A. "Coop" and Patti Cooprider William J. Houghton Tom and Diane Huckabee James M. Hughes

ANNOUNCING

Our

Photograph of a prototype of the Institute's new Donor Recognition Wall

As an expression of our gratitude and appreciation for the generous contributions of our supporters, we are excited to announce that we are commissioning a donor recognition wall. The wall will be installed in the outdoor loggia of our Auditorium and will be unveiled in March, 2005.

Donors who have given a cumulative total of at least \$2,500 to the Institute will be listed on the wall. The wall will be updated annually based on each donor's total contributions through the end of each calendar year.

We will be reserving a special section of the wall for donors who have made us aware of gifts through their will or estate. If you have made such arrangements or would like more information about doing so, please contact Jo Ann Anderson at (858) 626-2020 or by e-mail at anderson@nsi.edu.

Continued from page 20

Judith Hulse Lee and Beverlee Human Velma L. Hunter Murray Frances G. Hunter Patricia J. Hunter Camilla D. Hutson In Memory of Florence Ikebata Dean Gary Irey Eugene Izhikevich Mark and Amy Jackson Charlotte and Donald Jacobs Alan and Nora Jaffe Logan and Reneé Jenkins Inge Johansen Mary Evans Johnson Beverly Johnston Helen Jones J. Wemyss and Sandra Joss Saad Juma, M.D. Marley J. Kaplan Mel and Linda Katz Barbara B. Kerst Kenneth Khoury Madhukar V. Kittur Philip M. Klauber Louis and Donna Knierim Carrie Knowles-Law Milton and Edith Kodmur Sigrid Koebel Jay and Lael Kovtun Marvin L. Krichman Helene Kruger Stephen La Sala Janet Lamborghini John Lasher Dr. and Mrs. James Lasry Donald and Raquel Latham Michael Lavinger - Medilex, Inc. Catherine Lee Richard C. Levi Theodore and Mimi Levine Henry and Edith Levy Joan Lightner

Matthew Lim and Margaret Wang Lindsay & Brownell, LLP Jim Lindstrom Ron and Claudia Little Eldon and Marjorie Lockhart Stephanie Lovison Michael Malonev T. Mancuso Albert and Jorie Mark Melissa Marquardt Edward and Elizabeth Martin John S. Martinez, Ph.D. Kenneth and Cherie Mason Emy Mastrocola Susan McClellan Barbara McCormick Judy and Alex McDonald Kay P. McElrath Shaughn and John McGinley McGladrey & Pullen, Inc. Mary Meiners Robert H. Mellott Ivan and Lynn Mendelson Paul Meschler and Alexandra Pearson Margaret W. Meyer Estelle D. Milch Mr. and Mrs. John H. Mitchell Ross Mohan Bruce and Janet Moore Joany and Robert Mosher David Moss The Myers Family Trust Esther R. Nahama Padma Nanduri Robert J. Neborsky Gwynne Nettler Robert Noble Mary Lacy Nohrden Kay North

Ron and Lisa Oberndorfer

Atalanta Olito

Sandra L. Osborn

Kenneth Ott, M.D. Ioanne Overleese, M.D. Elaine R. Parent Norman and Doris Parker Anne F. Patton Louis and Peg Perry Bradley Peterson, M.D. A. C. Pierson Detlev W. Ploog David and Rita Priver Tom Pyle Susan W. Raffee Mr. and Mrs. Vimala Ragavan **Justin Renaudin** Edward Richard Milton Richlin and Jean Weissman Barbara Riggs John A. Rinek Carole Roberts Paul V. Roller Kent Rollins Lois S. Roon James R. Rosenfeld Beverly H. Ross Leonard L. Ross Nancy L. Ruhland Phoebe and David Sackett Deborah and Clarence Salzer Sholom Sanders Jean Carol Say A. Jack Schaps R. Larry Schmitt, M.D. Larry and Barbara Schneiderman Al E. Schorno Barbara Schrock Paul E. Schultz John and Beth Schumann Joseph and Marie Schwalbach Richard C. Schwenkmeyer Robert and Carol Scott Richard Seigle Dennis Shay, M.D. John J. Silber

Dee E. Silver Abby Silverman Lisa Smith Ned and Kathin Smith Dorothy and Ernest Snook Richard E. Stern Jeanne P. Stevenson John Strassburger Martha and Donald Stroben Janet K. Sutter Wilbert R. Sykes, M.D. Joseph and Elizabeth Taft Henry and Ting Z. Tan Susan Howell Mallory Nancy B. Tieken Manuel Tobias Sopac McCarthy Tompkins Emanuel and Deborah Torbati In Honor of Vivien Truax Eileen Tucker-Casal Irene Udelf Don and Kim Vonk Stanley and Stefani Walens Robert D. Wallace Bob and Nadyne Walton Amy A. Wandalowski Joanne S. Watson Allen Pat Weckerly Steve Wehba Karen Weseloh Patricia and Robert Whalen Ralph N. Wharton, M.D. Jack and Judy White Alison Whitelaw Doug Williamson Gordon L. Witter Victor and Dolly Woo Kirk and Donna Woodley Gene Worscheck Pat Xi William A. Yancey, M.D.

Director

Gerald M. Edelman, M.D., Ph.D.

Research Director

W. Einar Gall, Ph.D.

Senior Fellows in Experimental Neurobiology

Kathryn L. Crossin, Ph.D. Molecular cell biology; extracellular matrix

Bruce A. Cunningham, Ph.D. Structural biology; cell adhesion molecules

Ralph J. Greenspan, Ph.D.

Genetics of behavior Dorothy and Lewis B. Cullman Senior Fellow

Frederick S. Jones, Ph.D. Molecular biology; regulation of gene expression

Vincent P. Mauro, Ph.D. Molecular cell biology; translational control

Senior Fellows in Theoretical Neurobiology

Joseph A. Gally, Ph.D. Biochemistry; molecular biology Dorothy and Lewis B. Cullman Senior Fellow

Daniel S. Goldin, Ph.D. (hon) Brain-based devices

Jeffrey L. Krichmar, Ph.D.Machine psychology; learning and memory

George N. Reeke, Jr., Ph.D. Theoretical neuroscience

Associate Fellows in Experimental Neurobiology

Niraj S. Desai, Ph.D. Neuronal plasticity

Helen Makarenkova, Ph.D. Developmental neurobiology

Douglas A. Nitz, Ph.D. Neurophysiology *Clayson Fellow*

Geoffrey C. Owens, Ph.D.Molecular and cellular biology

Bruno van Swinderen, Ph.D. Genetics, physiology, and behavior

Weimin Zheng, Ph.D.Auditory neurophysiology

Associate Fellows in Theoretical Neurobiology

Eugene M. Izhikevich, Ph.D.Nonlinear dynamical systems

Aniruddh D. Patel, Ph.D.Perception of language and music *Esther J. Burnham Fellow*

Anil K. Seth, Ph.D.Neural modeling

Postdoctoral Fellows in Experimental Neurobiology

Megumi Adachi, Ph.D. Molecular neurobiology

Rozi Andretic, Ph.D.Molecular biology of behavior

Sigeng Chen, Ph.D.Molecular cell biology

Herman A. Dierick, M.D. Genetics of behavior

David B. Edelman, Ph.D. Gene expression; evolution

Indrani Ganguly, Ph.D. Molecular genetics

Edward W. Keefer, Ph.D. Cellular electrophysiology

Anthony H. Stonehouse, Ph.D. Molecular neurobiology

Daniel P. Toma, Ph.D. Genetics of behavior

Elisabeth C. Walcott, Ph.D. Cellular electrophysiology

Postdoctoral Fellows in Theoretical Neurobiology

Jason G. Fleischer, Ph.D. Neural modeling

John R. Iversen, Ph.D. Dynamics of perception Karp Foundation Fellow

Jeffrey L. McKinstry, Ph.D. Computer modeling of behavior

Botond Szatmáry, Ph.D. Neural modeling

Senior Affiliated Research Fellow

Floyd E. Bloom, M.D. Molecular neurobiology

Affiliated Research Fellows

Bernard J. Baars, Ph.D. Biology of consciousness

Robyn Meech, Ph.D. Molecular neurobiology

Peter W. Vanderklish, Ph.D. Synaptic physiology

Technical Staff

James A. Snook

Chief Engineer, Hardware Systems Blasker-Rose-Miah Fellow

Craig R. Cicchetti

Network and Systems Administrator

Donald B. Hutson

Engineer

Douglas A. Moore Programmer/Engineer

Glen A. Davis

Senior Research Technician

Donald F. Robinson, Ph.D. Senior Research Technician

Senait Bekele Research Technician

Amy E. Blatchley Research Technician

Tanya M. Casimiro Research Technician

Kristopher Flores Research Technician

Craig T. FredricksonResearch Technician

Shannon E. Hefler Research Technician

Thomas H. Moller Research Technician

Kara J. Mulkern Research Technician

Jenée L. Wagner Research Technician

Wayne E. Foster Facilities Assistant

Institute Relations

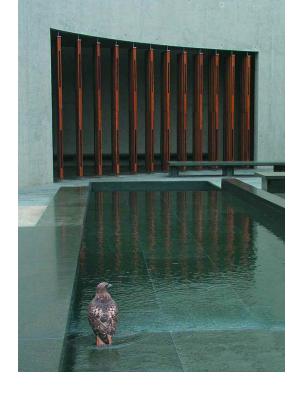
Jo Ann D. AndersonDirector, Institute Affairs

Rachel A. Jonte

Associate Director, Institute Relations

Administrative Staff

Elizabeth M. Gutschow Senior Administrative Associate


Sara L. Rosno Accountant

Diana M. Stotts Executive Assistant

Jessica R. Hackett Administrative Assistant

Sandra L. Janke

Library Administrative Assistant

NEUROSCIENCES RESEARCH FOUNDATION, INC.

Officers

William D. Walsh Chairman

Lewis B. Cullman Vice Chairman

Gerald M. Edelman, M.D., Ph.D. President

John R. Costantino Treasurer

W. Einar Gall, Ph.D. Senior Vice President, Operations and Clerk

CONTACT INFORMATION

10640 John Jay Hopkins Drive San Diego, California 92121 Telephone: 858.626.2000 Fax: 858.626.2099 Website: www.nsi.edu

Tax ID: 04-6071592

Contributing writer: Bob Ross Photography: Frank Domin, Einar Gall, Melissa Marquardt, Bob Ross, and

Bill Timmerman

Design: Marquardt Design

Board Members

Arthur G. Altschul, Jr. New York, New York

Alan D. Bersin San Diego, California

Susan P. Borden Calgary, Alberta, Canada

Esther J. Burnham San Diego, California

Patricia Dwinnell Butler La Jolla, California

H. Michael Collins San Diego, California

Erminio Costa, M.D. Chicago, Illinois

John R. Costantino New York, New York

Lewis B. Cullman New York, New York

Spencer Davidson New York, New York

Paul J. Dostart La Jolla, California

Elisabeth Kenney Ecke San Diego, California

Gerald M. Edelman, M.D., Ph.D. La Jolla, California

Peter K. Ellsworth San Diego, California

William J. Gedale New York, New York

Leon M. Jaroff East Hampton, New York

Lawrence E. Kline, D.O. La Jolla, California

Burton J. Manning New York, New York

Christopher S. McKellar San Diego, California

Toni Woodward Nickell Rancho Santa Fe, California

Bryce W. Rhodes Rancho Santa Fe, California

Charles Robins La Jolla, California

Joseph R. Satz La Jolla, California

Dr. Alberto J. Vollmer Caracas, Venezuela

Charles R. Wall New York, New York

William D. Walsh Menlo Park, California

Ira J. Weinstein New York, New York

M. Faye Wilson San Diego, California

Trustees Emeritus

William O. Baker, Ph.D. Murray Hill, New Jersey

William T. Golden New York, New York

William H. Sweet, M.D., Sc.D. (dec.) Brookline, Massachusetts Henry G. Walter, Jr. (dec.) New York, New York

General Counsel

Sander Lehrer, Esq. Scarola, Reavis & Parent New York, New York

